
Lie algebra of DiffAT2 and Bloch electrons in a constant uniform magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 6961

(http://iopscience.iop.org/0305-4470/26/23/035)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 26 (1993) 6961-6971. Printed in the UK 

Lie algebra deformation of DzYAT2 and Bloch electrons in a 
constant uniform magnetic field 
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Department of Physics, Faculty of Sciences, Ankara University, 06100 Ankara, Turkey 

Received 8 July 1992 

Abstract. Magnetic translation operators that generate symmetries of a Bloch electron in a 
constant uniform magnetic field are shown to span the sine bracket algebra which is the 
unique Lie algebra deformation of the area-preserving diffeomorphisms of a two-tom. The 
deformation parameter is identified with the-number of magnetic flux quanta through a 
Unit cell of the substrate lattice. The symmetries of a spin-1/2 Bloch electron are shown to 
realize the supersymmetric extension of the sine bracket algebra. 

1. Introduction 

Inhite-dimensional algebras that generate area-preserving diffeomorphisms of a two- 
dimensional surface were first studied by Arnold [l] with applications in the hydrody- 
namics of incompressible fluids. The recent interest in these algebras is mostly due to 
their relevance as residual symmetries of relativistic membranes [2-61. In general, sym- 
metry generators of a physical system such a s  a membrane with in6nitely many degrees 
of freedom may be thought of as the limiting case of finite-dimensional models. A way 
of determining an i&nite extension .of a finite-dimensional Lie algebra consists of 
f requiring the structure constants in some basis of the infinite-dimensional algebra to 
converge to those of the limiting finite Lie algebra. This process is called a deformation 
of the Lie algebra 171. In this paper we will concentrate on the following Lie algebras: 

where m and n are elements of a two-dimensional integral lattice, and N is  an odd 
integer. Thus we may identify the generators T,,,+(Np,N;) with T, for anyp, qeZ. In the 
limit N- CO the sine algebra (1) converges to the algebra (2). The above.algebras found 
applications in (i) hydrodynamics, (iij the .trigonometric solutions of the Yang-Bixter 
equations, (iii) relativistic membranes, and. (iv) atomic spectroscopy. We  show^ here 
that the problem of Bloch electrons in a uniform magnetic field [SI admits the supersym- 
metric generalization of the sine algebra (1) as the symmetry algebra. 

The paper is organized as follows. In section 2, a brief review of the area-preserving 
diffeomorphisms of a 2-torus DzyAT2 and S U ( N )  algebras is given. In section 3 the 
motion of Bloch electrons in a constant uniform magnetic field is studied. It is shown 
that the magnetic translation generators span sine algebra. We give a physical realization 
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of the supersymmetric sine algebra in section 4. The final section is devoted to a discus- 
sion of results. 

T Derek and A Vercin 

2. DifAT2 and SU(N) algebras 

The vector fields that generate the diffeomorphisms of a 2-tom are 

ay a af a L,=- - -- - ax ay ay ax 
a a i= Cl---+ cz - 
ax ay 

(3) 

(4) 

in terms of canonical coordinates (x, y)€[O, 2n) x [0, Zx),  where cI and cz are arbitrary 
constants. These generators satisfy the commutation relations 

Let us consider an orthogonal basis for N defined by the eigenfunctions 

(7) y =ei(mtx+mrv) 
m 

where m=(m,,  m2)sZX 2. The Lie commutator algebra can be completely charac- 
terized by the structure constants calculated in the basis (7). The Poisson bracket of 
Y, and Y. is given by 

( 8 )  

Then, writing for the algebra generators L,=Lu, and taking into consideration also 
the generators P, =a/ax and P2=a(ay corresponding to the harmonic form q ,  we 
determine the complete algebra of area-preserving diffeomorphisms on a 2-torus: 

{ Y,, Y.} = -mx nY,+,. 

[L,, L.1= m x nLm+, ( 9 )  

[Pi. pj1= 0 i, j =  1,2 

[Pj , Lm] = imjL,. 

In the following we will be interested only in the invariant subalgebra generated by 
L,'s, denoted by D s A T Z .  The inkite sine algebra (1) arises as unique Lie algebra 
deformation of DiffkT' in some suitable basis. We refer to the work of Fairlie et a1 [4] 
for the actual demonstration of the fact. 

It is well known that the structure constmts of DifAT2 can be approximated by 
SU(N)  structure constants. To demonstrate this the following N x N matrices are used 
~91: 



.~ 
Lie algebra deformations and Bloch electrons 6963 

These matrices satisfy 

hN= 1 g N =  1 hg = ugh (13) 
where o is an Nth root of unity with period no smaller than N. Let o =e4%"", where 
N is odd. If to each vector m= (ml , mz) we assign the N x N matrix 

(14) K,=" m l W f l  ml "22 g h  

and using (12) we can show that 

KL = K-, trK,=O 

except for m, = m2 = 0 mod N, and 

K, = K,smi=ni mod N. (16) 

Thus the vectors can be restricted to the sublattice defined by mj , mz= 0, 1,2, . . . , N- 1. 
If the origin m=(O, 0) is excluded, then there are precisely NZ-1 traceless, unitary, 
independent matrices K, which can be used as the~generators-of S U ( N )  algebra. On 
the other hand if the origin is included, then we have a complete set of N x N matrices 
which close under multiplication 

K,K,= No-m"n/2K,+, tr(K,,,K,) = N36,+. (17) 

where 6,+. equals one if and only if mi=ni mod N, and zero otherwise. Then one easily 
derives the algebra 

[K,,Kn]=2iNsin r; - m x n  1 K,,, (18) 

which in the l i t  N+oo converges (up to a scale factor) to the algebra of area- 
preserving Meomorphisms of the 2-torus: 

lim [K,, Kn]=4ni[L,, LJ. (19) 
N- ea 

Therefore, the structure constants of the algebra DzfiT' can be approximated by those 
of SU(N) and moreover the large N corrections can be determined explicitly from the 
above expression. 

3. Bloch electrons in a constant uniform magnetic field 

In this section we show explicitly that the symmetry operators of Bloch electrons in a 
constant uniform magnetic field generate the sine algebra (1) and in the limit a-0 
approaches the algebra DzfiAT2, where a is the number of magnetic flux quanta passing 
through a unit cell of the substrate lattice. In order to clarify these statements, we 
start with a non-relativistic electron of charge e, mass p moving on a Bravais lattice 
in the xy-plane under the influence of a constant uniform magnetic field B= B2. The 
Hamiltonian is 

6.. . , 

2P 
H = l  nk'+ V(x, y )  
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where the substrate potential is periodic in x and y 

I . ' ( X + U l ,  Y )  = V ( X ,  Y +  03 = V X ,  y )  (21) 

with U, and uz being the unit lattice spacings. The canonical momentapls are related 
to i ~ l s  by 

(22) 
e 

~ , = p r -  - Ai .  
C 

A is the vector potential satisfying @Ai= B whose general solution is 

The scalar A is an arbitrary function that determines the gauge we are working in. 

would have to be invariant under the lattice translation operators 
If B were to be zero, we would  have^ the well known Bloch electron and the system 

(24) ,eCi/lilRm'~ 
m 

that act on an arbitrary function according to r,,J(u)=f(r+R,,,). We have m= 
( M I ,  m z ) € Z x  2 and R,=mlal +mzaz is an arbitrary Bravais lattice vector. This pure 
spatial translational symmetry arises as a consequence of the periodicity of the potential 
and leads to a classification of the solutions (Bloch wavefunctions) by means of the 
eigenvaluesp (called the crystal momentum). When a constant magnetic field is present 
His  no longer invariant under the action of 7, .  The reason is because A is not constant 
whereas B is. Nevertheless, even in this case there are the so-called magnetic translation 
operators 

(25) 

p*= x i - p o  E& (26) 

T,= ,CVWR;B 

that leave H invariant. j3 is given by 

and its components satisfy the commutation relations 

[Pa,, = - [n, rd =ifipomxi. (27) 

/?, as a constant of motion, is classically connected with the cyclotron centre. [T,,,, n2/ 
2p] =@ in any gauge, however, [T,, HI=@ is valid only in a gauge that is fixed by a 
function that is at most a quadratic function of the coordinates because only in such 
a gauge we have T,= (a phase) z,. We gave the explicit factorization of T,'s in some 
particular Coulomb gauges elsewhere [ 101. In order to understand the physical meaning 
of magnetic translation operators let us define the following dimensionless operators: 

(28) 
1 
E 

l,=-R;/? 

that satisfy 
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where 

@ mn = -&,= (R,  x R,J . p = m  x n@,. (30) 

mxn=mln~-mm, .  @,,,xn is the magnetic flux that passes through the cell defined by 
R,,, and R,, and 

eh 
e 

are the magnetic flux through the unit cell al xu2,  and the magnetic flux quantum 
(fluxon), respectively. We can now write the magnetic translation operators as 

(31) @ I = ( u l x u J ' B  @ 0 = -  

T "8 =e"m, (32) 

Since the commutator [I,,,, b] is a c-number, using the Baker-Campbell-Hausdorff 
formula e e - e  A E -  A + B + h [ A . N .  . it is easily veri6ed that 

(33) 

T.Tm (34) 

T T =eai(mx")(lT 
m+n ,,,,A 

-e2vi(mx")a - 

where a = @,/@,, is the number of fluxons passing through tbe unit cell. The parameter 
a plays a very fundamental role in the subsequent discussions. The following important 
observation concerning the nature of a is due to Bloch [ 111 : for a square lattice aL = 
a2=a, the period of motion of an electron in a state with crystal momentum 2nli/a is 
t,,,,l=pa2/li, and the period of the cyclotron motion is tCyclotron=2n/m. Thus, the ratio 
of the two fundamental periods of the problem is a = t,s~l/tCyCiofron. 

Equation (34) clearly shows that, although the operators 7,'s form an infinite cyclic 
group, the magnetic translation operators T,'s do not form such a group, but rather 
a projective ray group [ 121. Moreover, it is easy to show that T,'S generate the following 
infinite-dimensional Lie algebra: 

[T,,,, T,] = 2i sin(nam x n)T,+.. (35) 

The Jacobi identity is'satisfied. An important point that must be emphasized once again 
is that our investigation is almost independent of the choice of a gauge. The only 
condition we require is that the quadratic gauge is needed for H to be invariant under 
the action of Tm's. 

The main properties of the algebra of magnetic translation operators can be stated 
as follows. Tm's are unitary, i.e. Tk= T-,, and satisfy the symmetric product 

(36) 

where 1, ]+ denotes the anti-commutator. Furthermore our algebra admits two sub- 
algebras generated by 

[ T,,,, TJ+ = 2 cos(nam x n)T,+, 

ImIEZ} (37) 

l m , ~ Z }  (38) 

qal)= { ~ $ z t ) = e ( i / f i h n ! P ~  

qa2) = {,$U) = e( j / f i )"3z 

respectively. These are infinite Abelian groups by themselves, but they do not commute 
with each other: 

(39) TLy)T(",d = w"'i"%T$$)T("81) 
ai 01 ' 
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where o =e2”“. Therefore 

T D e d i  and A Vercin 

[~hy’, ~ $ 3 ] = 2 i  sin(zmlmza)Tm. 
Consequently every T, admits the following factorization 

= o - m , m d 2 T ( m d T ( m 3  
m a1 4 . 

In the limit as a +O, i.e. the magnetic field 5-0, the algebra qf pure spatial translations 
is recovered: lim,-&Tm, T’]=[zm, r.]. If the T,’s are rescaled as 

T;= -i(27ra)-’~, (42) 
then 

(43) 
1 .  [Tb, TA] =-sin(zam xn)T;+.  

za 

and the algebra DiTAT2 is recovered in the limit as a+O: 
lim [Tb, T:]=mxnTb+, .  
a-0 

The above properties of the algebra of magnetic translation operators indicate that 
certain restrictions on a may lead to physically interesting finite subalgebras. From the 
physical point of view such restrictions on a will result from appropriate boundary 
conditions on the substrate lattice structure. Boundary conditions that reduce the infinite 
lattice to a k i t e  one, say of the size NlN2 a, x a2, so as not to destroy the algebraic 
structure will serve the purpose. We take a natural generalization of the Bom-von 
Karman boundary conditions that apply to the zero-field case [SI. The Bom-von Kar- 
man boundary conditions require the Bloch eigenfunctions to go into themselves under 
pure spatial translations corresponding to the full finite lattice:r,,l y) = rN2j y )  = I y). 
In this case, if one particular eigenfunction goes into itself, then all the other eigen- 
functions obtained from this one by arbitrary lattice translations also go into themselves. 
This is an obvious consequence of the Abelian nature of the generators T,’s. On the 
other hand, this property in general is no longer valid for Tm’s. To see it, let us suppose 
that TN,I y )  = TNJ y )  = I y). Then, since [ Tm , HI = 0, the wavevector I vm) = ?“,,,I y )  is 
also an eigenvector of the Hamiltonian. However. 

I vm>, TNA vm> =e I vm> (45) - 2 m N p q o  2niNlmzn 
TN,I ym> = e 

so that in general T,l ym) # I  y,). From this it follows that the so-called magnetic 
boundary conditions can be satisfied by all eigenfunctions if and only if 

N,a = (integer) N2a =(integer) -- - (integer). (46) 
2 

Thus for the irrational values of a the magnetic boundary conditions cannot be imposed 
and consequently our algebra has no finite subalgebra. The case with the integer values 
of a is of no physical interest, since in this case we have nothing other than the Abelian 
algebra of 7,’s. Furthermore the integer values of a are practically very difficult to 
obtain because this restriction is in fact a restriction on the magnetic field strength and 
for a normal sized unit cell we would have 

Gauss 4.136 x log 
alaz(in units A’) p = (integer) (47) 
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So the only remaining case is 

where 1 and N are relatively prime integers. Then the conditions (46) can be satisfied 
simultaneously provided NI and N2 are two integers such that N is~their greatest com- 
mon divisor. That is to say, magnetic boundary conditions can not^ be imposed for 
relatively prime N I  and N2. Suppose they are not relatively prime. Then two subcases 
must be distinguished: (A) when N I  = N z = N  and (B) when N I = M I N ,  N2=M*N with 
M I  and Mz being relatively prime. 

Case (A).  N I = N 2 = N  
In this case we have modulo-N structure in the argument of the structure constants 
and 

T:=T:=~ TJ,= oT,T., (49) 

where o =e2ni'". Comparing these with the equations ( 1 3 )  we can identify T,, with the 
matrix h and T, with the matrix g. Thus the magnetic translation operators subjected 
to magnetic boundary conditions generate an SU(N)  algebra when N is odd, and 
SU(N/2)  algebra when N is even. 

Case (B). NI = M,N, N2 = MzN ( M I  and M2 relatively prime integers) 
In this case without loss of generality we can set M 2 =  1, since the structure constants 
in (35) do not chance with the replacement (ml . tm2) -* ( tml , m2). Thus we may identify 
T(m,+k,MIN,mi+hhl =T(,,,,, so that M I N  generators split into mutually commuting M I  
S U ( N )  algebras (i.e. MI factors S U ( N )  x . . . x S U ( N ) )  . We may label S U ( N )  algebra 
by an index q=O, 1, .  . . , M I - 1 :  

It can be easily shown that 

[T;, T$]=Zisin - m x n  T$+,J"'. (51) c 1 '  
The above considerations can be easily extended to the case of many Bloch electrons 

[ 131. Furthermore, in this case we may let the Bloch elecirons interact via a potential that 
depends only on the relative distances between the particles. We take the Hamiltonian 

where N. is the number of electrons and the superscripts label the particles. The substrate 
potential Vo is periodic in x and y :  

(53) V(x(Y) +a] , y'Y') = V ( X ( T ) ,  + a2) = V(x CY) , y (Yl  ) . 
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Similar to before, we obtain the following algebra of 1-particle operators: 

T Dereli and A Vergin 

[ J p ,  X f q = i f i p w & * , P  

[PLY', PI"] = -ififitoeuws'~ 

[ffP, PI"] = 0 

where 

~~Y)=-ifi~~Y)--A(Yl e 
k 

C 

Pk7'=.y' -Po&k;x'(Y' 

and for any y 
$a:Y)A(Y)-B 

I - '  

The 1-particle magnetic translation operators T:' generate the algebra 

[T:'. TP] =2i sin(nanz x 

Then the magnetic translation operators for N. electrons is defined by 

Making use of (60) we can show that 

[Fm , F,,] = 2i sin(nain x E) Fm+- 
where a'=N.a. Then Fm's are symmetry operators of the many-electron Hamiltonian 
H given by (52) in any gauge determined by at most a quadratic function of coordinates. 

4. A realization of the supersymmetric sine algebra 

We next consider a Bloch electron with spin-b in a constant uniform magnetic field. 
The Hamiltonian in this case is 

S , X W  1 
2P 2P 2 

+ V(x, y) =--- Roo,+ V(x, y )  
(U. X)Z H=- 

where U; are the Pauli spin matrices and o=(aX, U,,). Without the periodic potential 
V(x, y),  the problem is supersymmetric [14] and the eigenfunctions of the Hamiltonian 
are labelled, in addition to the usual bosonic quantum numbers (n, M ) ~ ,  by a fermionic 
quantum number nF=O, 1, i.e. I(n, m)B, nF). This new quantum number introduces a 
two-fold degeneracy of each excited state in addition to the infinite degeneracy of the 
well known Landau states. In order to obtain the symmetry generators of H given by 
(63) all we have to do is to multiply the magnetic translation operators T,'s by a 
2 x 2 matrix that commutes with U: [lo]. The most general form of such a matrix is 
cla+c~b, c,, C ~ E C  where 
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such that a’= a, b2 = b, ab = ba= 0. Then we define the non-unitary operators 

T‘A’ = UT,, T,? = bT, (65)  

[TC, T?’]=2i sin(aamxn)T:)+$’ i , j = A ,  B .  (66) 

TZ)= T(“)+ m TCJ, (67) 

(m+n)* =m* + n* m* xn* = em xn. (68) 

that satisfy the commutation relations 

One can construe$ unitary operators by taking the linear combinations 

where the * map of an integral 2-vector m is defined as follows ( E =  f 1): 
,** - - m  

Some examples of * maps of m are given for E= 1 

m*=m. = -m 

and for &=--I 

m*= (w, m d  m*=(-m,,m2) m*=(ml ,  -mz) .  (70) 
It is easily verified that provided m* = m  we have 

while for m* = -m we have 

Then the choice E =  1 leads to the following algebra commutators: 

[T;), TA+)] = [T:), ~:-)]=2i sin(nam x n ) ~ z ? , + ! .  (73) 

[TC’, Th-)]=2i sin(nam xr~)T:i. (74) 

[Tg’, Ti+)]= [TL’, Ti-)]+ =2 cos(namxn)Tzjn (75) 
[T:’, Ti+)]+ = 2  cos(sam x n)Tzjn. (76) 

All the extended operators above commute with the Hamiltonian H given by (63). Let 
us define a set of rescaled generators: 

together with the symmetric bracket relations 

~ , = ( 2 i n a ) - ’ ~ z )  (77) 

F,= (4i~a)-”~~:). (78) 

These span the superalgebra 

(79) 
1 .  [K,  . K.] = - sin( aam x n)K,+. 

n a  
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[F,, F.1, = cos(zam x n)K,+. . (81) 
Thus we have obtained the supersymmetric extension of the sine algebra,and its,explicit 
physical realization in terms of magnetic translation operators. The l i t  a-0 yields 
as one would have expected the supersymmetric generalization of DIKT’: 

rL,, L.1 =m x &z+n (82) 

[L, Gn1=mxnGm+. (83) 

[Gm, G.I+=Ln+n. (84) 

5. Conclusions 

We have demonstrated that the motion of a Bloch electron in a constant uniform 
magnetic field that is commensurate with the substrate lattice provides an example from 
condensed matter physics where the sine algebra (1) makes its appearance. There are 
some aspects of this problem that we think are worthy of remark. First, it should be 
emphasized that the concept of a Lie algebra deformation has nothing intrinsic to do 
with quantization of a classical system. In fact we have shown here that it is a,  the 
number of fluxons that pass through a unit cell, that plays the role of the defonnation 
parameter. The derivation of the sine algebra can be carried out with equal ease either 
at the classical level using the Poisson brackets or at the quantum level using canonical 
commutation relations. The magnetic translation operators T,’s that span the dgebra 
(1) would have been obtained exactly as above had we worked in terms of Poisson 
brackets among the classical phase space variables. 

In the last section we gave the explicit physical realization of the supersymmetric 
sine algebra in terms of magnetic translation operators. This construction is new and 
it might be relevant to the study of anyons in a magnetic field [15], and hence add to 
the current theoretical understanding of the quantized Hall effect 1161. 
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